1)首先两种数据库都选择平衡m叉树作为底层索引结构,因为平衡树m叉树是同种元素序列情况下的深度最小的m叉排序树。这可以减少m叉树元素查找的深度,从而提升平均查找效率。B树和B+树都是平衡m叉树。
2)Mongodb选择B树为索引结构,Mongodb是典型的非关系行数据库,设计之初就不会用来做多个遍历操作,那么如果要查询单条数据的话只要进行一次中序遍历,查到与叶子上数据相同的节点即可。
3)Mysql是典型的关系型数据库,选择B+树的原因是所有再也节点的数据都有前后关系,因为有链指针,由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。因此任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当,B+树的查询效率更加稳定。而且把所有同一内部节点的关键字存放在同一盘块中,这样磁盘容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了。
其实这最本质的原因我个人认为是数据库类型的原因,Mysql是关系型数据库,遍历操作多,比如left join之类的,自然选择具有数据前后关系的B+树;Mongodb是非关系型数据库,遍历操作少,就选择B树,因为单次查询用中序遍历,可以直接查到符合的数据。
Mongodb是非关系型数据库(nosql ),属于文档型数据库。文档是mongoDB中数据的基本单元,类似关系数据库的行,多个键值对有序地放置在一起便是文档,语法有点类似javascript面向对象的查询语言,它是一个面向集合的,模式自由的文档型数据库。
1.如果需要将mongodb作为后端db来代替mysql使用,即这里mysql与mongodb 属于平行级别,那么,这样的使用可能有以下几种情况的考量: (1)mongodb所负责部分以文档形式存储,能够有较好的代码亲和性,json格式的直接写入方便。(如日志之类) (2)从datamodels设计阶段就将原子性考虑于其中,无需事务之类的辅助。开发用如nodejs之类的语言来进行开发,对开发比较方便。 (3)mongodb本身的failover机制,无需使用如MHA之类的方式实现。
2.将mongodb作为类似redis ,memcache来做缓存db,为mysql提供服务,或是后端日志收集分析。 考虑到mongodb属于nosql型数据库,sql语句与数据结构不如mysql那么亲和 ,也会有很多时候将mongodb做为辅助mysql而使用的类redis memcache 之类的缓存db来使用。 亦或是仅作日志收集分析。
索引是影响数据库性能的重要元素.
这里比较一下 MySQL 与 MongoDB 中索引的基本使用, 也算复习一下这个数据库中的基本概念
注: MongoDB 的操作以其自带 mongoshell 为准, 不同语言的 api 操作(传参, 调用)可能会有一些差别
准备
索引总是建立在字段上的, 所以我们这里做准备一张简单的表, 并做一些简单的数据.
MySQL 怎么建表, 插数据就不多说了
MongoDB 不需要显式的创建 集合 (Collection, 与 MySQL 中表是同一级概念) 所以直接插入数据.
索引的 CRD
### 创建索引.
MySQL 创建索引的方式很多, 可以在建表同时直接创建. 也可以在建表后再补.
如果是在建表同时创建, 需要将上面的建表语句修改一下
建表后则用 ALTER TABLE
或 CREATE INDEX
创建
下面两种方式均可以在 tbl 表的 value 字段上创建一个名为 idx_value 的索引.
MongoDB 则只留出了一个 createIndex 的接口来创建索引
另外要注意的是, MongoDB 允许在暂时不存在的集合或不存在的字段上添加索引.
如果集合名或字段字敲错了, mongoshell 可不会报错.
在 mongoshell 中有一个助手方法, ensureIndex
可以看到, 其实 ensureIndex
仍然通过调用 createIndex
来完成索引创建
其实像 nodejs 或 python 中 MongoDB 的建立索引的接口名称都使用的 ensure. 而不是 create
查看已有索引.
MySQL 使用 show index
命令即可查看, 同时可以使用 where 子句进行过滤
MongoDB 则不能进行条件过滤, 只能使用 getIndexes
查看所有的索引信息.
删除索引.
在 MySQL 中删除索引时, 和创建一样可以用 ALTER TABLE
或 DROP INDEX
两种方法
而 MongoDB 则是允许用 dropIndexes
一次性删除全部索引, 也可以用 dropIndex
删除指定索引
索引在执行计划中的表现
### 没有使用索引的情况 先来看看没有使用索引时的执行计划是个什么样子.
使用 explain 命令可以获得 MySQL 中 SQL 语句的执行计划.
type 字段中的 ALL
就表示了这次查询是全表扫描, 而 key_len 字段则明确的告诉我们没有使用索引
不能相信 key 字段, 因为可能这样: create index `NULL` on tbl(value)
类似的,MongoDB允许使用 explain
方法获取查询的执行计划
其中 cursor
的值为 BasicCursor
, 已经说明这次查询没有使用索引
一般情况
现在, 把索引建立起来, 看看相同查询的执行计划.
MySQL 使用索引查询时的执行计划
type 显示为 ref
, 说明是在使用一般索引查询( 若使用主键索引, 则显示为 const
) rows 字段由之前的 5 变为 1, 扫描行数变少了. key, key_len 说明了使用了什么索引以及这个索引有多长
MongoDB
cursor 值为 BtreeCursor value_1
, 表示使用了名为 value_1
的索引进行查询 nscannedObjects 表示最终结果中查询过的对象数, 使用索引之前为 5, 现在变为 1.
仅查询索引
MySQL 和 MongoDB 中都有这样一个特性:
查询时, 如果要求返回的字段信息只包含索引字段, 那么将直接从索引中返回值, 不会再进行实表查找
MySQL 中, 如果出现这样的情况, 会在 Extra 字段中显示 using index
信息, 如下
而 MongoDB 中, 则是将 indexOnly 字段置为 true
, 并且 nscannedObjects
为 0
MongoDB中排序使用索引
在 MongoDB 中, 除了查询条件可以利用索引以外, 进行排序的相应字段也可以在排序时利用索引.
这点是 MySQL 所不具备的
直接上执行计划.
可以看到, 没有任何查询条件, 只进行排序确实是使用了索引.
不同的是, 在 indexBounds
中对索引字段 value 的查找范围是从 $minElement 到 $maxElement.
索引的强制使用
因为数据库自动使用索引的选择不见得是最好的. 所以 MySQL 和 MongoDB 都提供了强制使用索引的方法.
MySQL 中 使用 use index 子句
MongoDB 中则使用 hint 方法